
PDS4 Concepts

Data Design Working Group

April 1, 2019

Version 1.12.0

PDS4 Concepts 2 2019-04-01

Contents

PDS4 Concepts .. 1

Contents .. 2

I. Introduction ... 5

1. Background ... 5

1.1 The Need for Standards .. 5

1.2 The Archiving Process ... 5

2. This Document .. 6

2.1 Outline ... 6

2.2 Audience ... 6

2.3 Related Documentation .. 6

II. Overview of PDS4 .. 6

3. Data Structures ... 7

3.1 Observational Data ... 7

3.2 Documents .. 7

3.3 Supplementary Information .. 8

4. XML, XML Schema, and Schematron .. 8

4.1 What is XML? .. 8

4.2 Why XML? ... 8

4.3 What is XML Schema? ... 9

4.4 Why XML Schema? .. 9

4.5 What is Schematron? .. 9

4.6 Terminology .. 10

5 Namespace ... 11

6. Data Dictionaries ... 11

6.1 What is a Data Dictionary? .. 12

6.2 PDS4 Data Dictionaries.. 12

6.3 Creating Data Dictionaries .. 13

6.4 Using Data Dictionaries ... 13

PDS4 Concepts 3 2019-04-01

7. Labels .. 13

7.1 Organization .. 13

7.2 Creation ... 15

7.3 Validation .. 15

8. Archive Organization ... 15

8.1 Products .. 15

8.2 Collections ... 17

8.3 Members of Collections .. 17

8.4 Bundles .. 18

8.5 Logical Identifiers .. 18

8.6 Version Identifiers ... 18

III. PDS4 Data Structures ... 20

9. Scalars ... 20

9.1 Character Types .. 20

9.2 Binary Types .. 20

10. Arrays .. 20

10.1 Elements.. 21

10.2 Axes ... 21

10.3 Storage Order .. 21

10.4 Additional Considerations ... 21

11. Tables .. 22

11.1 Character Tables ... 22

11.2 Binary Tables ... 23

11.3 Records and Fields .. 23

12. Parsable Byte Streams .. 24

12.1 Flat Text ... 24

12.2 Flat UTF-8 Text .. 24

12.3 Delimited Tables ... 25

13 Encoded Byte Stream ... 25

13.1 PDF/A .. 25

13.2 Other Formats ... 26

Appendix A – PDS4 Glossary ... 27

PDS4 Concepts 4 2019-04-01

Appendix B – PDS4 Acronyms and Abbreviations .. 33

Appendix C — PDS4 Data Dictionary .. 35

C.1 Introduction and Purpose ... 35

C.2 Related Documents ... 35

C.3 Terminology .. 35

C.4 PDS4 Data Dictionary Structure .. 36

C.5 Management of Attributes and Classes .. 41

Change Log .. 43

Version 1.4.0 ... 43

Version 1.7.0 ... 44

Version 1.8.0 ... 47

Version 1.9.0 ... 47

Version 1.10.0 ... 47

Version 1.11.0 ... 47

Version 1.12.0 ... 47

PDS4 Concepts 5 2019-04-01

I. Introduction

This Concepts Document provides overviews of PDS4, including an introduction to
terminology needed for understanding and applying PDS4 standards to archives of
planetary science data. The document itself does not define standards for PDS4; in cases of
conflict, the definitive references are [1] and [4].

1. Background

NASA’s Planetary Data System (PDS) is a federation of ‘discipline nodes,’ each specializing
in a subset of planetary science such as geosciences, atmospheres, and planetary rings. PDS
has been operational for more than two decades, most of that time in its version 3 (PDS3).
A lot has changed since PDS3 was introduced; PDS version 4 (PDS4) has been developed to
bring both the archiving process and use of the archived data into the modern era.

1.1 The Need for Standards

Standards lie at the heart of information transfer and interoperability. They provide the
framework within which we browse the web, make online purchases, and even open and
print this document. PDS standards ensure consistent description of planetary science data
so that data providers1, programmers, and end-users all know what to expect when
creating and working with PDS files. Standards also guarantee that the data collected and
archived today will still be readable and usable generations from now — a long-term
return on today’s investments made in flying planetary spacecraft and funding ground-
based planetary research.

1.2 The Archiving Process

When a data provider first contacts PDS, one of the discipline nodes will be assigned as the
principal, or consulting, node for the mission, instrument, or project. A large mission may
have different consulting nodes for different groups of instruments; when this happens,
one discipline node will be designated as the lead node.

The consulting node provides basic training, copies of standards documents and tutorials,
development materials, and advice throughout the archive development effort. As the
archive is being designed, the consulting node recommends additional information, over
and above the observational data, which should be included — calibrations,
documentation, etc. When data production starts, the consulting node provides validation
support for standards compliance and conducts an external peer review of data submitted;
it then monitors archive quality through final delivery.

More details about the discipline nodes, peer review process, and available tools can be
found at http://pds.nasa.gov.

1 The terms ‘data provider’ and ‘data preparer’ are used interchangeably throughout this document
to mean the person or organization archiving data with PDS.

http://pds.nasa.gov/

PDS4 Concepts 6 2019-04-01

2. This Document

This document provides an overview of a PDS4 archive and describes the concepts
(including vocabulary) behind the archive design and implementation.

2.1 Outline

After this Introduction, there are three more parts to this document. Section II, Overview
of PDS4, provides overviews of data structures, the application of XML to PDS4, use of
labels for describing products, organization of products into archives, and the steps that go
into successful design of an archive. Section III, PDS4 Data Structures, provides more detail
on structures and formats that appear in typical PDS4 archives. Finally, a set of appendices
provides additional detail on selected topics.

2.2 Audience

This document is intended for a general audience with little or no background in PDS, XML,
or data preparation. It is appropriate for both data preparers and end users who wish to
familiarize themselves with basic PDS4 requirements, structures, and definitions before
diving into the full text of documents such as [1], [2], and user manuals for PDS4 software
tools.

While instructions and examples in this document are given in the context of data prepared
for archiving in the NASA Planetary Data System, the PDS4 Standards are available for use
by other national and international space agencies, and indeed the PDS welcomes such
usage. Other agencies using the PDS4 Standards have complete governance over their own
data repositories, name spaces, and mission and discipline data dictionaries. Readers are
encouraged to contact their archiving authority for details.

2.3 Related Documentation

[1] PDS4 Standards Reference, see http://pds.nasa.gov/pds4/doc/index.shtml for current
and past versions.

[2] PDS4 Data Provider’s Handbook, see http://pds.nasa.gov/pds4/doc/index.shtml for
current and past versions.

[3] Consultative Committee for Space Data Systems Secretariat, Reference Model for an
Open Archival Information System (OAIS), CCSDS 650.0-B-1 Blue Book, Washington, DC:
National Aeronautics and Space Administration, January 2002.

 [4] PDS4 Information Model, see http://pds.nasa.gov/pds4/doc/index.shtml for current
and past versions.

II. Overview of PDS4

Part II of this document provides an overview of PDS4 data formatting standards and the
terminology used in preparing data for archiving. The archiving process is actually fairly
simple and straight-forward; it can be efficiently implemented as a ‘pipeline’ for many
archives. However, documenting the file formats and context within which the data were

PDS4 Concepts 7 2019-04-01

acquired and processed is labor-intensive and must be done with both care and
completeness.

3. Data Structures

PDS4 recognizes four ‘base’ data structures: array, table, parsable byte stream, and
encoded byte stream. These data structures are tightly constrained, particularly for
observational data. For most situations, simple formats for arrays and tables are sufficient.
Where the simple formats cannot be applied, PDS has approved certain external standards
— in many cases specific subsets of those external standards — as acceptable for its
archival holdings. If data cannot be described in terms of these PDS4 ‘base’ structures, they
cannot be archived under PDS4 and must be revised. Note that not all PDS3 structures are
compatible with PDS4.

3.1 Observational Data2

The vast majority of observational data can be described as either N-dimensional arrays or
tables. Images, for example, are 2-dimensional arrays of identically formatted pixels.
Fixed-width tables (text or binary) and delimited tables (text only) store data in records
comprising fields of potentially different types but with the field assignments repeating in
successive records.3 PDS4 data standards [1] dictate what storage formats are acceptable
for pixels in arrays and fields in tables.

3.2 Documents

Documents include any textual or text-based information supplied to assist the user in
understanding, interpreting, calibrating, or otherwise manipulating the data. Documents
may themselves be data products. Frequently documents include graphics and/or images
to assist in comprehension. PDS has adopted the PDF/A4 standard as the archival format
for complex documents. UTF-85 encoded text files may be used for simple documents that
do not require graphics or special formatting control.

2 PDS considers raw and partially or fully processed data derived from instrument (raw) data to be
‘observational.’ For example, both the raw frames and a geometrically and radiometrically
calibrated mosaic of images would be ‘observational data.’

3 Delimited tables are actually a type of PDS parsable byte stream.

4 “PDF/A” is a shorthand reference to “ISO 19005-1:2005— Document Management — Electronic
document file format for long-term preservation – Part 1: Use of PDF 1.4 (PDF/A-1). “ This
standard, based on Adobe’s Portable Document Format reference version 1.4, is designed for use in
archival storage of documents. It builds on the underlying PDF standard by adding additional
requirements to ensure that the document file itself contains sufficient information that it can be
reproduced exactly from its contents. These requirements include font, graphics, and color
management information.

5 UTF-8 is one of several multi-byte character encoding schemes that are used to implement
Unicode. UTF-8 uses the minimum number of bytes required to represent each Unicode code point,

PDS4 Concepts 8 2019-04-01

UTF-8 documents are examples of PDS parsable byte streams; PDF/A and JPEG files are
examples of PDS encoded byte streams.

3.3 Supplementary Information

Most submissions of observational data cannot stand alone – they require additional
information to place the data into appropriate contexts within a mission, observing
campaign, or discipline. ‘Supplementary information’ and ‘supplementary data’ are terms
applied generally to this additional archival material, which may include some or all of the
following, and more:

• Browse products

• Descriptions of spacecraft, instruments, observing geometry, etc.

• Calibration data, including both observations and distilled results such as flat-field
data, filter curves, transformation tables, etc.

• Observing and command logs

Some supplementary information, such as instrument descriptions, is essential to the long-
term viability of an archive and will be required by the consulting node. Data providers are
encouraged to include all other information that might be helpful to an end user.

Supplementary information must be in the same four ‘base’ structures as were described
above.

4. XML, XML Schema, and Schematron

The current implementation of the PDS4 system uses XML for all labels and inter-process
communication. XML Schema and Schematron (distinct from XML, and discussed more
fully below) are used to define and constrain the structure and content of labels.

4.1 What is XML?

XML is the eXtensible Markup Language — a set of syntax rules that can be used in just
about any application that involves parsing text. If you’ve seen HTML, then XML will have a
familiar look; but XML is a much more formal syntax.

4.2 Why XML?

Following its recommendation by the World Wide Web Consortium (W3C), XML has
become an international standard for information interchange. It provides a fixed and
well-defined syntax for creating document structures. As XML has increased in popularity,
a wealth of third-party software has been developed to support the creation, parsing, and
syntax validation of XML files (called ‘documents’ in XML parlance). PDS and its
community can leverage this existing software not only for syntax validation — important

so that the byte length of a single character may vary within a UTF-8 document. UTF-8 uses only
one byte to encode the 7-bit ASCII code points, however.

PDS4 Concepts 9 2019-04-01

enough in itself — but also to reduce the effort required to create new software to read,
write, and manipulate the information in a variety of environments.

In addition, the namespace aspect of XML (and XML Schema, following) provides a
convenient method for implementing local data dictionaries (LDDs), as described below.
LDDs contain new definitions needed within specific disciplines or mission contexts so that
data preparers can tailor their labels to the data in hand without impacting the more
general structures defined at the PDS level.

4.3 What is XML Schema?

XML is only useful as an interchange standard if both the sender and receiver know the
definitions of the various tags6 used in the XML document. XML defines the syntax for the
tags, but not their names or meanings. PDS4 uses XML Schema7 to define those tags and
constrain their content.

XML Schema, also known as W3C XML Schema (WXS) and XML Schema Document (XSD), is
a large and complex framework for defining the schema — the specific grammar and
content structure — to be used in a set of XML documents. An XML Schema file is itself
written in XML.

4.4 Why XML Schema?

XML Schema has the advantages of being widely supported, having a number of predefined
data types useful to PDS, and offering support for the types of constraints and structure
definitions required in PDS4 labels.

As with XML itself, there are many third-party tools that support the creation and
application of XML Schema files, and the schema files created can be used to validate and
verify the contents of the corresponding XML labels. Further, XML Schema files contain
detailed documentation of label structure and contents, which can be saved as part of the
supplementary information for the data in the archive. In fact, PDS uses only a subset of
the capabilities available in XML Schema.

PDS has developed procedures and tools to assist users in working with XML Schema to
produce the schemas needed for their XML labels.

4.5 What is Schematron?

Schematron is an XML-based language for expressing rules for validating XML documents.
A set of Schematron rules may be used to further constrain tags defined in an XML Schema.

6 In XML a tag is a character string delimited by “<” and “>”. An ‘XML element’ is a structure that

begins with <tag>, contains ‘content,’ and ends with </tag>. For example, <date>2009</date> is

an XML element establishing the date as 2009. For more information, including definitions of
technical terms, see Appendix A.

7 Schema is a Greek word meaning shape or plan; its plural is schemata. In English both schemata
and schemas are used [see www.wikipedia.org]; PDS has adopted the latter.

PDS4 Concepts 10 2019-04-01

More information about using Schematron can be found in Appendix B of the PDS Data
Provider's Handbook [2] and at http://www.xfront.com/schematron/.

4.6 Terminology

Some basic XML terminology will be useful for talking about PDS XML files and their
contents. Consider this snippet of XML, which might appear in a movie database
application:

<movie>

<title>Bedtime for Bonzo</title>

<firstRelease>1951</firstRelease>

<director>Frederick de Cordova</director>

<screenplayBy>Lou Breslow</screenplayBy>

<screenplayBy>Val Burton</screenplayBy>

<storyBy>Ted Berkman</storyBy>

<storyBy>Raphael Blau</storyBy>

<starring>Ronald Reagan</starring>

<starring>Diana Lynn</starring>

</movie>

In this example, <movie>, <title>, and <storyBy> are all tags. “Bedtime for

Bonzo” is the content of the XML element title, and the content of the XML element

movie is all of the elements (the tags with all of their content) that come between

<movie> and </movie>.

Because PDS data structures are based on an object-oriented design methodology, PDS
uses the term attribute to refer to simple tags (like title and director) and the

term class to refer to tags with complex content, like movie. In the example above, using

PDS parlance, title and starring are attributes of the class movie.

In XML parlance, a file that contains well-formed (that is, syntactically correct) XML-
formatted text is referred to as an XML document. An XML document has a single root tag –
the first (and highest-level) XML tag in the file. The associated XML element contains all the
other elements that comprise the document. PDS labels are well-formed XML documents.

An XML attribute is a qualifier for an XML element. For example, in

<length unit=’’foot’’>3</length>

unit qualifies length, so the content of the XML element should be interpreted as “3

feet.” PDS uses XML attributes in only a few situations, such as specifying units. The term
“XML attribute” will always be used in those cases — to distinguish XML attribute from the
more common PDS use of attribute.

PDS4 Concepts 11 2019-04-01

5 Namespace

A namespace is a context for defining something. For example, in the phrases “car title”
and “movie title”, the word title has two very different meanings — “automobile
ownership documents” or “name of the movie,” respectively. “Car” and “movie” provide
contexts that have a significant effect on interpretation of “title.”

XML namespaces provide similar context for definitions. Two XML elements with the same
name but different namespaces will (usually) have different definitions. The example
above might look like this in XML:

<movie:title>...</movie:title>

<car:title>...</car:title>

The namespaces are movie and car, respectively. The content of <movie:title> will no

doubt be a string, but the content of <car:title> is likely to be a set of subsidiary XML

elements containing information such as the Vehicle Identification Number, make, model,
year, registered owner, etc.8

Namespace has an analog in language. Using the notation above, <French:journal>

means “newspaper” whereas <English:journal> is more akin to “magazine.” In this

example the two namespaces — French and English — provide different contexts, which
change the interpretation of the word.

Namespaces are managed by stewards; a single namespace can have only one steward, but
a steward can manage many namespaces. The steward of the French language is the
Académie Française, charged in 1634 with forging a common French language; there is no
comparable steward for English. In PDS there are different namespaces for common terms,
discipline terms, and mission terms; PDS assigns a steward to each. See Appendix C.5,
Management of Attributes and Classes, for more information about the management of
namespaces.

6. Data Dictionaries

A data dictionary defines the meaning and structure of classes and attributes. When used
in the context of XML files, it can also constrain the content within an XML element. A one-
to-one correspondence between namespaces and dictionaries is not required and is, in fact,

8 Some additional detail: The movie: and car: prefixes in this example illustrate how

namespaces are referenced in an actual XML file; but, in practice, these strings would more likely be
nicknames (abbreviations, if you prefer) for the true namespace identifiers, which most often look
like URLs. The association between the nicknames and the actual namespace identifiers is made at
the top of the XML file. In PDS4, XML label files will not only define these prefixes but also provide
explicit pointers to the XML Schema files containing the element definitions for each namespace so
that the label can be validated against the appropriate definitions. Only namespaces that are
registered in the Namespace Registry may be used in PDS4 labels
(https://pds.nasa.gov/pds4/schema/pds-namespace-registry.pdf).

PDS4 Concepts 12 2019-04-01

the exception. However, it may be helpful to think of a data dictionary as containing all
definitions within a single namespace.

6.1 What is a Data Dictionary?

A data dictionary contains a list of terms and definitions used to describe one or more
collections of data. Practically speaking, a data dictionary must be both human-readable
and also structured in such a way that it can be used by a machine — to interpret the
content of other XML files. A properly constructed data dictionary facilitates enforcement
of syntax and semantic constraints placed on values of attributes. It also enables
verification that class definitions have been properly implemented by giving the explicit list
of attributes that define the class, indicating which are required, optional, and/or
repeatable. A data dictionary also specifies whether a class definition must or may include
associations — one-way relationships between the class being defined and another class.

A typical data dictionary will exist in several forms:

• definitions created by a data preparer

• an XML Schema file and an XML Schematron file used by software for validation of
labels

• a human-readable document in which the definitions, specifications, and constraints
have been abstracted to facilitate use by human developers

The data provider's definitions, which are submitted as an XML or XSD file, will typically be
the ‘reference’ version of the data dictionary. Software utilities then generate the XML
Schema and Schematron files and the human-readable version.

6.2 PDS4 Data Dictionaries

PDS4 data dictionaries define classes and attributes used in PDS4 XML files by specifying
tags, their meanings, and the acceptable values (including structure) that may appear as
content. For example, the data dictionary that defines the movie class in Section 4.5

(above) must also define all of the classes and attributes within it, such as <title> and

<starring>. Most of these will be simple text strings, but <firstRelease> is

probably going to be an integer, constrained to have a value of 1878 or greater.

In PDS4 there is a PDS-wide data dictionary defining classes and attributes common to all
labels. There are also discipline data dictionaries containing the classes and attributes
specific to various disciplines (for example, a geometry data dictionary), and there is often
a data dictionary containing classes and attributes specific to data archived for a given
mission; discipline and mission data dictionaries are called ‘local data dictionaries’ (LDDs).
To control the proliferation of data dictionaries, PDS lead nodes may require that missions
be served by a single LDD. Since the discipline node, mission, and other stewards have
carefully grouped their class and attribute definitions into distinct namespaces, even two
uses of “title” or “journal” (for example) coming from the same data preparer will be
separable.

PDS4 Concepts 13 2019-04-01

6.3 Creating Data Dictionaries

PDS personnel compile local data dictionaries that include terms common to the system or
to a discipline node. Individual data preparers may create mission and other LDDs,
coordinated through the consulting and/or lead node. A ‘registration authority,’ such as
PDS, manages dictionary development by establishing and coordinating stewards and their
namespaces within its domain.

Creating a local data dictionary is not an exercise to be undertaken lightly. It must be
conducted under supervision of a consulting node to ensure conformance with PDS4
requirements for LDDs. Typically the work begins with a semantically and syntactically
valid local data dictionary template, which is then completed for the classes and attributes
to be added, restricted, or extended in the local dictionary. Appendix C provides
background, which may be useful in understanding the scope of the work.

6.4 Using Data Dictionaries

The typical PDS product label may reference several data dictionary schema files; each of
the schema files may have multiple namespaces. The most likely three schema files will be:

 The PDS common data dictionary, required in every label, which contains the
definitions of the globally-required classes and attributes as well as the fundamental
data structures (arrays, tables, documents, etc.);

 An optional discipline data dictionary supplied by the consulting PDS node, which
defines attributes and classes needed for searching or manipulating the data; and

 An optional mission data dictionary created to define the attributes and classes that
provide detailed mission-specific documentation of the product contents.

7. Labels

With the PDS common data dictionary (and, possibly, discipline and mission dictionaries),
it is possible to construct labels for the products in an archive. PDS4 labels are XML files
that describe the contents of one or more files (observational data, document files,
calibration tables, etc.). With one important exception (discussed in Section 8.4) the PDS
label is always in a file separate from the ‘data’ it describes. The combination of a PDS label
plus what it describes is called a ‘product’.

7.1 Organization

A PDS label serves several purposes, including:

 Carrying unique identification for its product within the PDS (think serial number);
 Pointing to the physical files that are the actual product content (e.g., data);
 Describing the structure of the component files (e.g., table rows and columns)
 Documenting other aspects of the product — observing conditions or processing

status for observational data; or authorship, abstract, and copyright information for
documents.

These purposes map loosely into ‘areas’ within a label:

 XML Header — contains links to local and remote schemas

PDS4 Concepts 14 2019-04-01

 Identification Area
o Information that uniquely identifies the product

 Observation Area
o Descriptions of the specific observation, laboratory experiment, etc.
o Subsections for information appropriate to

 one or more disciplines, and
 the mission or an equivalent entity

 Reference List Area
o Information on other products, journal articles, etc., relevant to understanding

this product (both internal and external to PDS)
 File Area

o Pointers to the component file(s), and
o Detailed descriptions of the file(s)

Immediately after the XML header (see lines 1-2 in the example below) is a root tag,
<Product_Observational>, which, paired with </Product_Observational>,

envelopes everything else in the label. Inside this complex XML element (only a few details
are shown in the example), information is organized into the ‘areas’ described above
(except Reference List Area, which is optional), which are complex XML elements
themselves. The hierarchy continues downward to the lowest level — simple XML
elements that specify values . Note that for each <tag> there is always a matching

</tag>.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-model href="http://pds.jpl.nasa.gov/schemas/PDS4_PDS_0700j.sch"?>

<Product_Observational ...">

 <Identification_Area>

 ...

 </Identification_Area>

 <Observation_Area>

 ...

 </Observation_Area>

 <File_Area_Observational>

 <File>

 ...

 </File>

 ...

 <Table_Binary>

 ...

 <Record_Binary>

 ...

 <Field_Binary>

 ...

 </Field_Binary>

 ...

 </Record_Binary>

 </Table_Binary>

 </File_Area_Observational>

</Product_Observational>

PDS4 Concepts 15 2019-04-01

7.2 Creation

As noted above, labels can be created within processing pipelines by using either schemas
or templates. The schema approach requires that code be written and then executed to
generate labels. A template looks exactly like the finished label except that dummy
variables have been inserted where values change; a ‘search and replace’ procedure can
then be used to fill in the correct values when a label must be generated.

7.3 Validation

Finished labels must be validated against any schemas upon which they were based, such
as the common PDS schema and any discipline and/or mission schemas. This validation
can be done inside an XML editor, through programming libraries in languages such as Perl
and Java, with command-line utilities such as Linux xmllint, or with combinations of these.
PDS personnel have developed a stand-alone validation tool that uses schemas and
Schematron files to search for and validate specific patterns in labels. Data preparers
should adopt appropriate validation procedures early so that errors do not persist and
propagate. Labels that fail validation when they reach PDS will be rejected. Consulting PDS
nodes can provide help in finding and using validation tools.

8. Archive Organization

The word ‘archive’ is used generally to mean large collections of data being held primarily
for preservation. When referring to the entirety of the PDS holdings, the word is often
capitalized (Figure 8-1). In this document, we use ‘archive’ to mean “the entire collection of
data, documents, and supplementary information created by a data preparer.” So, for
example, when we talk about a ‘mission archive,’ we mean all of the files coming from a
single mission.

Because the typical archive usually contains thousands, if not hundreds of thousands of
files, some organization is required to ensure proper storage and retrieval. This section
describes the hierarchy used to organize archives created by data preparers both
physically and logically. Whereas Figure 8-1 shows the organization from the top down,
the sections below describe the construction of an archive from the bottom up.

8.1 Products

In PDS we are primarily concerned with digital ‘objects;’ examples include 2-dimensional
images and ASCII tables. These are usually stored in files; but image and table files
sometimes begin with ‘headers’ — which provide summaries or serve as ‘fingerprints’ and
have completely different structures. The header is a second digital object within the data
file; we need to describe and track both the header object and the image (or table) object.
We create a ‘description object’ to describe each digital object — one for the data and
another for the header (if any). The concatenation of description objects (plus a little
overhead required by XML) becomes our PDS label; the label plus all of the digital objects it
describes is called a ‘product’.

PDS4 Concepts 16 2019-04-01

Figure 8-1. Organization of archives, including links from PDS to other archive systems, which
interact by exchanging XML documents. Some missions (A and B) may create multiple bundles. A
single bundle may have several collections, each of which has several products comprising a label

and one or more objects (green). Other bundles (yellow) would have similar structures.

PDS4 Concepts 17 2019-04-01

Less commonly, the digital objects, which need to be tracked together as a single product,
are spread over multiple files. For example, while red, green, and blue arrays that form a
color image could be stored in single file and labeled and tracked as a single product, they
could also be in three separate files.

Every product label contains a ‘logical identifier’ for the product, and that logical identifier
is unique across the entire PDS. Because interoperability across the international
federation of archives (Figure 8-1) requires that each member system be independently
identified, uniqueness across PDS also guarantees uniqueness across the federation (see
Section 8.5).

8.2 Collections

Products are grouped into ‘collections’ by type and content. Observational data, for
example, may be gathered into an observational data collection, documents into a
document collection, and supplementary data into a supplementary collection. Most
archives are large enough that there likely will be many observational data collections, and
possibly several document and supplementary collections. Observational data collections
are typically split along instrument, instrument mode, and/or data type (e.g., image vs.
spectra) boundaries. The products included in a single collection should be closely related;
the criteria for ‘close’ are usually left to the data provider working with the consulting
node.

To specify a collection, the data preparer creates a table, which lists all of the PDS product
logical identifiers that meet the criteria for being ‘closely related.’ The data preparer then
creates a label for the table file. So a collection can be thought of as a higher-order product
— one that aggregates products that share one or more characteristics. The collection
label, like any other label, contains a logical identifier that is unique across the entire PDS.
Formally, a PDS collection is only the table and its label; but it is common, when discussing
collections, to think of them as the table, label, and all of the member products.

8.3 Members of Collections

A ‘basic product’ is the simplest product in PDS4; it is one or more data objects (and their
label), which constitute (typically) a single observation, document, etc. The only PDS4
products that are not basic products are Product_Collection (the collection table

and its label, described above) and Product_Bundle (the corresponding product at the

bundle level, which will be described below). Every basic product must be a ‘primary
member’ of one (and only one) collection. Basic products may be ‘secondary members’ of
any number of collections. In practice, this means that every new product enters PDS as a
primary member of one collection; then its identifier may be re-used, showing that it is a
secondary member of other collections. For example, a collection of images of the Saturn
system may be subdivided into Saturn atmosphere, Saturn ring, and Saturn satellite
collections without requiring the copying of the image products themselves. The images
would be ‘basic products’ and ‘primary members’ of the original collection and ‘secondary
members’ (as appropriate) of the other collections. The atmosphere, ring, and satellite
collections could be nothing more than their respective inventory tables (and labels).
Mixing primary and secondary members in a single collection is not prohibited; but data

PDS4 Concepts 18 2019-04-01

preparers should discuss possible repercussions with the consulting node before
exercising the option.

8.4 Bundles

Collections are themselves gathered into bundles. Small archives may have a single bundle
containing all of the collections. Larger archives will be broken into bundles along some
convenient lines (mission phase, source instrument, review schedule, etc.).

To specify a bundle, the data preparer creates a Product_Bundle label, which is like

other product labels (Section 7.1) except that it includes a Bundle_Member_Entry for

each member collection instead of a File Area. This is the one type of label (mentioned in
Section 7) that incorporates the ‘data’ into the label itself, although it does so using the
class-attribute structure. Each Product_Bundle label includes an Identification Area

with a logical identifier that is unique across PDS.

8.5 Logical Identifiers

Every product, collection and bundle in an archive will have a unique logical identifier
(LID). For example, this is the LID for an image (an observational data product) from the
fictional Sunburn mission, where fields are delimited by the colon (“:”) character:

urn:nasa:pds:sunburn-1:solcam-cr1-raw:image01321

The urn:nasa:pds fields are required in all PDS LIDs. They identify the LID as a PDS

system reference. The next field, sunburn-1, is the ID for one of the bundles produced

by the Sunburn mission — the one containing this data product. All of the collections in
this bundle will have the bundle ID as part of their LIDs. The next field, solcam-cr1-

raw, is the ID of the particular collection to which the product belongs. All products in this

collection will have this collection ID as part of their LIDs. Finally, the image01321 field

is a product ID, which is unique within the solcam-cr1-raw collection. By prepending

the bundle and collection IDs to the product ID, data preparers can be sure of creating
product identifiers that will be unique across the entire PDS; with the urn:nasa:pds:

prefix, each product has a unique LID across the entire universe of federated archive
organizations.

Note that the LID or logical identifier is not tied to the physical location of the data — thus
it is a logical identifier, as opposed to a file specification. We use LID or logical identifier in
this document whenever we mean the full LID, from URN: to the last data preparer-

specified segment. We use the term ID to refer to a segment within a LID (i.e., a string
between colons); for example, in the LID above, the product ID is image01321 and the

collection ID is solcam-cr1-raw.

8.6 Version Identifiers

Products, collections, and bundles may evolve over time as calibration or other processing
changes lead to improved versions. PDS appends a version identifier (VID) of the form M.n

PDS4 Concepts 19 2019-04-01

to logical identifiers to indicate different versions. The suffix is separated from the LID by a
double colon — for example

urn:nasa:pds:sunburn-1:solcam-cr1-raw:image01321::1.0

would be the first version of product image01321. There are some circumstances in

which the versioned logical identifier (LIDVID) is more appropriate and others in which the
LID may be preferred. When a product is requested and only the LID is given, PDS will
default to the most recent version. Products that have undergone distinctly different
processing (as opposed to better calibration), should be given a new LID.

PDS4 Concepts 20 2019-04-01

III. PDS4 Data Structures

In Part III we expand on some of the topics introduced in Section 3, focusing on the ‘data’
objects, how they are described, and constraints imposed by PDS.

The structure of the data may have already been fixed when the data arrive at the desk of
the data preparer. If those formats are PDS-compliant, nothing more needs to be done with
the data. If the formats are not compliant, adjustments will be required. Care must be
taken if reformatting raw data because errors, however unlikely, may render the entire
archive unusable in ways that can never be corrected. Reformatting more highly processed
data is encouraged if it makes the resulting products more attractive to end users. In either
case, designing data processing software with an eye toward the final archive can save both
time and effort in the long run.

9. Scalars

Scalars are the smallest storage units in the PDS4 system9. A single element of an array is a
scalar, as is a single field in a table. PDS tightly constrains what scalar types may be used in
tables and arrays to ensure long-term stability in the archive and to provide a sound basis
for PDS and third-party software development.

9.1 Character Types

Character fields in observational data files are restricted to the printable 7-bit ASCII
characters, plus the blank character. Within this character set, PDS defines a number of
specific data types based on formatting constraints and requirements; examples include
ASCII_MD5_Checksum, which is limited to the characters 0-9, a-f, and A-F. These data

types may be used in both binary and character tables; they are the only choices for
character tables. PDS also allows the non-printing Tab as a field delimiter in the

Table_Delimited class and requires the Carriage-Return Line-Feed pair as

the record delimiter in both Table_Delimited and Table_Character.

9.2 Binary Types

Binary data types must be used in arrays and in binary tables. Acceptable binary data types
include signed and unsigned integers of various bit lengths, IEEE 754 floating point
representations of 4- and 8-byte lengths, and complex formats constructed from floating
point components. Two byte orders are recognized for binary numbers — least significant
byte first (LSB) and most significant byte first (MSB).

10. Arrays

The simplest structure available for data storage is the (homogeneous) array — that is, an
N-dimensional structure in which all the elements have the same data type. This is the
structure underlying all images, spectral cubes, maps, and similar structures. Defining an

9 However, ‘scalar’ is not a PDS4 storage structure; scalars are part of larger structures.

PDS4 Concepts 21 2019-04-01

array requires definition of the element type, and then definition of the number and lengths
of each of the axes.

10.1 Elements

Any of the binary types based on 8-bit bytes listed in section 9.2 may be used as the data
type for an array element. Array elements may be associated with a number of
characteristics such as units of measure, offsets, and scaling factors. The data preparer
may also designate specific ‘flag’ values to be used — for example, to indicate saturated
pixels in an image. In a PDS4 XML label, the element and its attributes are defined using the
Element_Array class in the common PDS data dictionary.

10.2 Axes

Each array will have one or more axes. In a PDS4 label, each axis is defined using the
Axis_Array class in the common PDS data dictionary so that interpretive attributes (like

the name of the axis) can be specified for each axis individually. The principal attribute of
an axis is its length.

The order in which the axes are defined is significant; it is important to know which axis
comes first, which second, etc., so that axes can be accurately mapped to subscripts in
storage arrays in program memory and to storage order in the physical file. In a PDS4
label, axis order is stated explicitly using a sequence number in each axis definition. If the
axes of an array correspond to subscripts, then the axis with sequence number 1 would be
the first (leftmost) subscript, axis number 2 the next, and so on.

10.3 Storage Order

The individual bytes of any array element are stored in the order dictated by their scalar
type; for example, LSB and MSB have opposite byte orders.

The elements of the array are stored such that the subscript along axis 1 (notationally, the
leftmost axis) varies most slowly; that along axis 2 next most slowly; and so on. This means
that the elements along the highest-numbered (rightmost) axis will be stored contiguously.
This storage order has also been called row-major order historically, from 2-dimensional
arrays in which the subscripts were thought of as [row, column] — though this becomes a
less intuitive description as the number of axes increases.

This order also corresponds to the storage order used by the C programming language, and
it is the default storage order for 2-dimensional images under the PDS3 standard.

10.4 Additional Considerations

The mapping of logical array space to storage space can be tricky — as when going from an
analysis format to a PDS4 archival format. It is absolutely essential that it be done correctly
so that high-level descriptive parameters can be properly applied. A two-dimensional image
incorrectly stored will ultimately appear inverted on a display device, making it impossible
for a user to determine the direction of celestial north relative to targets in the image, for
example.

PDS4 Concepts 22 2019-04-01

11. Tables

Tables — more specifically fixed-width tables10 — consist of a repeating record structure
with each record comprising a set of fields. PDS requires that each field be a fixed-width
scalar of an appropriate type. All records in the table must have exactly the same structure;
consequently, all records in a table will have the same length.

Fixed-width tables come in two types — binary and character. Binary tables may contain
character fields, but character tables may not contain binary fields. An alternative to the
fixed-width character table is the delimited table described in section 12.3.

11.1 Character Tables

Each field in a character table must have one of the allowed character data types (section
9.1. Each record in a character table must end with a two-byte record delimiter consisting
of the ASCII carriage return character and the ASCII line feed character.

Fixed-width character tables often have ‘gutter space’ between fields. In most cases this
will be a blank character; but it can also be a fixed-length string of blanks, a comma, or any
other string of one or more valid characters (printable characters plus the blank). Quotes,
which enclose a field of characters, are considered to be part of the gutter space. Gutter
space is not required; but character tables without gutter space tend to be less readable.

Gutter space, where it exists, and the two-byte record delimiter are considered to be
outside the actual fields; their bytes should never be included in any of the field definitions
in the character table record. The summed widths of all defined fields subtracted from the
total record length should be the number of gutter space bytes plus the record delimiters.

Character tables have two major advantages over binary tables for data storage:

 They are directly human-readable (or printable); and
 They can represent numerical values to arbitrary precision.

The human-readability factor makes character tables extremely stable for long-term
storage. It is nearly impossible to misinterpret a character file with standard encoding.
ASCII is one of the longest-lived computing standards in existence; since it is preserved in
Unicode and UTF- 8, it does not appear to be in any danger of becoming obsolete soon.

Because numeric values expressed as ASCII strings are not constrained by the limitations of
binary conversion or byte counts, character tables can potentially contain integer values
greater than those in binary integers and real values with more precision than is possible in
binary floating point formats. Of course, the creation and manipulation of such values
usually requires that they be represented in a binary format; but, if an observer creates
hyper-precision values (for example the first 1000 digits of) and wants them preserved,
a character table may be the easiest option.

10 Fixed-width tables are distinguished from tables with records of variable length — the
Table_Delimited class, which is actually a parsable byte stream (see Section 12.3)

PDS4 Concepts 23 2019-04-01

Despite the fact that character files generally require more bytes for storage than binary
files, character files are often preferred because of their human-readability, the possibility
of being able to read the files directly into spreadsheet programs, and the simplicity of
reading the values using every major programming language without having to worry
about detailed architectural issues like byte order on the target machine.

11.2 Binary Tables

Unlike character tables, binary tables have no record delimiters and no gutter space per se;
if a data preparer generates them, they simply become additional binary fields. In fact, any
character table can also be defined as a binary table (the converse is not true).

It is not necessary to define all binary fields in a PDS label; ‘spares’, the delimiters and
gutter space already noted, and ‘unknown’ fields are not uncommon in binary files from
some sources. The data preparer should describe all of the fields in a binary record that are
known; there may, for example, be some fields in legacy data that are simply not
documented. The data preparer should certainly describe all fields that are of interest to
the investigation for which the data were collected.

The fields in a binary file will mainly be of the types mentioned in Section 9.2, though some
of the character types mentioned in Section 9.1 may also appear. Dates and times, simple
character strings, and flags (for example, ‘0’ and ‘1’) are among the most common character
fields in binary tables.

Binary tables have two major advantages over character tables for data storage:

 For tables containing primarily numeric data, the binary version will likely be
substantially smaller than the character equivalent; and

 There is no conversion error in reading binary floating point numbers into
memory on machines that use the same floating point storage format as
PDS4.

The IEEE-754 floating point format required by PDS4 for real (and complex) numbers is
common across computing platforms as of this writing. For the average user who prefers
binary, the major considerations are byte-ordering and byte-alignment. However, many
users are happy to have a human-readable table that is an order of magnitude larger than a
binary table simply because of the readability factor.

11.3 Records and Fields

In PDS4 labels describing tables, the table is a class, which has records. The record is a
class, which has fields. The field is a class, which has attributes. The specific field
attributes vary somewhat depending on the type of table, record, and field; but they
generally include name, data type, start position within the record, length, and description.
Additional optional attributes (especially for numeric fields) include things like format,
value offset, scaling factors, and unit. Classes that may appear within a field include
Special_Constants, which provides a set of values to indicate special cases (missing,

invalid, saturated, etc.), and Field_Statistics, which can indicate the minimum,

maximum, mean, median, and standard deviation for the field.

PDS4 Concepts 24 2019-04-01

12. Parsable Byte Streams

Parsable byte streams can be quickly and easily interpreted using standard rules. Common
examples of parsable byte streams include:

 text stored in records representing lines on a printed page
 ASCII tabular data stored as records of variable length

In these two examples, each record would end with a delimiter (for example, an ASCII
carriage-return line-feed pair), making the byte stream parsable. PDS also recognizes
SPICE kernels, certain header structures, and XML files as falling within the definition of a
parsable byte stream.

12.1 Flat Text

Flat text (Stream_Text class) is the simplest parsable byte stream. It has only three

required attributes:

 offset — displacement in bytes of the start of the text from the beginning of the

parent structure (often set to “0”)
 record_delimiter — set to the carriage-return line-feed pair

 parsing_standard_id — the non-PDS standard which makes the stream

parsable

Note that record delimiters (as mentioned for the example above) are only required if
mandated by the external standard.

12.2 Flat UTF-8 Text

In this section we elaborate on UTF-8, a specific implementation of the Unicode character
standard. UTF-8 text is the same as flat text (Section 12.1) so far as data structures are
concerned; this section merely provides more background on UTF-8 and Unicode.

The Unicode standard assigns a unique number, called a code point, to every character,
glyph and control code used in text files. A Unicode Translation Format (UTF) maps
Unicode code points to a specific byte value sequence. There are several UTFs in use,
including the most popular variants UTF-8, UTF-16 and UTF-32. PDS has designated UTF-8
as the text standard for PDS4.

Unicode allows the use of letters with diacritical marks as well as many single-character
symbols (degrees, the Angstrom symbol, Greek letters, etc.), which are useful in text
documents describing an archive. UTF-8 has several additional features that make it an
appealing choice for PDS4 text files:

 It is completely backwards-compatible with 7-bit ASCII (the PDS3 text standard).
That is, any existing flat text file that contains only 7-bit ASCII characters is
automatically UTF-8 compliant.

 It uses only as many bytes as are actually needed to express the Unicode code point,
so that the vast majority of characters used in PDS4 text files will require only a
single byte representation. (UTF-16, as a counter-example, uses two bytes for all
characters, which would effectively double the size of simple PDS4 text files.)

PDS4 Concepts 25 2019-04-01

 It is not byte-order dependent. UTF-8 treats multi-byte characters as strings, so
issues of byte storage order (LSB vs. MSB) do not affect UTF-8 strings.

 Conversion from native text to UTF-8 is supported in a wide variety of editors on all
major platforms.

12.3 Delimited Tables

In contrast to fixed-width tables (Section 11), delimited tables (Table_Delimited class)

have records of variable lengths. This structure allows more efficient storage when field
values are expressed with varying precisions and, especially, if many fields are empty.
Delimited tables are also readily ingested into many commercially available spreadsheet
programs11.

The number of fields and their content definitions do not change from record to record, but
the format within each field is allowed to vary. Fields are separated by field delimiters
(PDS allows the ASCII horizontal tab, comma, semi-colon, and vertical bar characters as
field delimiters), and records are separated by record delimiters (ASCII carriage-

return line-feed pairs).

A delimited table that has four records delimited by carriage-return line-feed pairs and in
which only one of 10 comma-separated fields is populated might look like this:

 1,,,,,,,,,<CR><LF>

 ,2,,,,,,,,<CR><LF>

 ,,,404,,,,,,<CR><LF>

 ,,,,,,7.797,,,<CR><LF>

13 Encoded Byte Stream

An encoded byte stream can only be interpreted after it has been ‘decoded’ according to
some well known standard. This generally implies that computation is needed before the
information can be seen and used. For this reason, and the related concern about long-
term viability of encoded structures, PDS strictly limits use of encoded byte streams within
archives.

13.1 PDF/A

All documents in PDS archives must appear in PDF/A (an encoded byte stream), UTF-8 (a
parsable byte stream), or both.

PDF/A is an ISO standard format based on the PDF 1.4 definition. It is the only archival
format that accommodates inline graphics and images. It requires that all fonts used in a
document be embedded in the PDF, so that they will always be available for printing or
displaying the document. Data preparers who will be producing PDF/A documents should,
therefore, be careful to avoid proprietary and copyrighted fonts.

11 In PDS3, Table_Delimited was known as the SPREADSHEET

PDS4 Concepts 26 2019-04-01

PDF/A is becoming an increasingly common output option for documents composed in the
major commercial editors. PDS will accept either Level A or Level B compliance (possibly
listed as “PDF/A-1a” and “PDF/A-1b” in some format menus).

13.2 Other Formats

PDF, Microsoft Word, and Postscript are acceptable secondary formats for documents once
a PDF/A or UTF-8 version has been included.

GIF, JPEG, PNG, and TIFF are among formats allowed for supplementary encoded images,
such as in a browse collection.

PDS4 Concepts 27 2019-04-01

Appendix A – PDS4 Glossary

archive: A place in which public records or historical documents are preserved; also the
material preserved — often used in plural. Sometimes capitalized when referring to
all of PDS holdings — the PDS Archive.

array: An N-dimensional data structure in which every element has an identical data type.
For example, a structure with 5 rows and 3 columns in which each element is a 2-
byte signed integer would be an array.

association: An attribute that establishes a unidirectional relationship between two
classes. For example, a table has records; ‘has record’ is the relationship between
one entity (the table) and another (a record).

attribute: A property or characteristic that provides a unit of information. For example,
‘color’ and ‘length’ are possible attributes.

basic product: The simplest product in PDS4; one or more data objects (and their
description objects), which constitute (typically) a single observation, document,
etc. The only PDS4 products that are not basic products are Product_Collection and
Product_Bundle. Every basic product must be a primary member of one (and only
one) collection. Basic products may be secondary members of any number of
collections.

bundle: A list of collections. Product_Bundle, the bundle’s manifestation, is itself a product
(because it is simply a list embedded within a label); but it is not a basic product.
For example, a bundle could list a collection of raw data obtained by an instrument
during its mission lifetime, a collection of the calibration products associated with
the instrument, and a collection of all documentation relevant to the first two
collections.

cardinality: The number of values allowed for an attribute or association in a single class.
Cardinality in general is stated as a range with a minimum and maximum. For
example, an optional attribute that may be multi-valued will have a cardinality of
"0..*". A cardinality where the minimum and maximum are the same is often shown
as the single value; for example, an attribute required to have exactly one value will
have a cardinality of "1". When a value is required, the minimum cardinality is at
least 1.

class: The set of attributes (including a name) which defines a family. A class is generic —
a template from which individual members of the family may be constructed. If the
class ‘rope’ (its name) is defined by attributes ‘color’ and ‘length’, we can construct a
family of ropes — e.g., red and 3 m long, red and 4 m long, blue and 2 m long, ...

class hierarchy: An ordering of classes which shows parent-child relationships.

collection: A list of basic products, all of which are closely related in some way. The
collection’s manifestation, Product_Collection, is itself a product (because it is
simply a list, with its label); but it is not a basic product.

PDS4 Concepts 28 2019-04-01

component: A digital object in a file of observational data that is identified as part of a
composite structure.

composite structure: A class that identifies two or more objects in a single data file as
components of a logically integrated structure and provides the relationships
between them.

conceptual object: An object which is intangible (and, because it is intangible, does not fit
into a digital archive). Examples of ‘conceptual objects’ include the Cassini mission
and NASA’s strategic plan for solar system exploration. Note that a PDF describing
the Cassini mission is a digital object, not a conceptual object (nor a component of a
conceptual object).

consulting node: A PDS discipline node assigned as the contact for a mission, instrument,
or project.

container: The physical equivalent of a package (see below); the product manifest and all
related files wrapped together for transfer — for example, in a ZIP, GZIP, or TAR file.

data dictionary: A repository for definitions of classes and attributes.

data object: A physical, conceptual, or digital object.

data preparer: Same as data provider.

data provider: A person or organization that assembles archival data for delivery to PDS.

data structure: A particular way of storing data in a computer that facilitates efficient use.

description object: Something that describes an object. As appropriate, it will have
structural and descriptive components. Technically speaking, a ‘description object’
in PDS4 is a ‘digital object’ — a string of bits; but we assume that we can read it and,
on that basis, give it a special name.

digital object: An object which is real data — for example, a binary image of a redwood
tree or an ASCII table of atmospheric composition versus altitude.

discipline area: That part of a label which is specified by a discipline.

encoded byte stream: A byte stream that may only be interpreted after it has been
‘decoded’ according to some well-known standard.

entity: Something that has a distinct, separate existence.

extension: (1) See subclass. (2) The character string following the last period in a file
name.

identifier: A unique character string by which a product, object, or other entity may be
identified and located. Identifiers can be global, in which case they are unique
across all of PDS (and its federation partners). A local identifier must be unique
within a label.

information model: A representation of concepts, relationships, constraints, rules, and
operations to specify data semantics for a chosen domain of discourse. Specifically,
the PDS Information Model (IM) is the representation that specifies PDS4.

http://en.wikipedia.org/wiki/Operation_(mathematics)
http://en.wikipedia.org/wiki/Semantic_data_model

PDS4 Concepts 29 2019-04-01

information object: A data object paired with its description.

inventory: An itemized list of current assets or holdings.

label: The aggregation of one or more description objects such that the aggregation
describes a single PDS product. In the PDS4 implementation, labels are constructed
using XML, which imposes a small amount of overhead.

label template: A text file which serves as a pattern for constructing labels.

lead node: One of several consulting nodes designated as the PDS coordinator and primary
contact with a mission.

local: (1) Within a single label. (2) Within an archiving entity — e.g., local data dictionary.

local data dictionary (LDD): A data dictionary for classes and attributes which are not
defined across the entire PDS. Examples include data dictionaries for discipline
nodes, missions, and individual archiving projects.

logical identifier (LID): An identifier which identifies the set of all versions of an object.

manifest: A list of contents.

meta-attribute: An attribute of an attribute — that is, a ‘dictionary’ attribute, which is
used to define one or more attributes in the PDS4 Information Model. For example,
‘conceptual_domain’ and ‘maximum_value’ are used in defining some attributes.

metadata: Data about data — for example, a ‘description object’ contains information
(metadata) about an ‘object.’

mission: A task with which a group of people have been charged, usually by a government
agency and including priority (if not exclusive) use of one or more spacecraft (see
attribute type within class Investigation_Area).

mission area: That part of a label which is specified by a mission.

model: A representation or description designed to show an entity and its composition.

namespace: A context for defining classes and attributes. Two items with the same name
but from different namespaces generally have different definitions. For example,
“title” has a very different meaning in a movie namespace compared with its
meaning in an automobile namespace.

object: The realization of a single member of a family defined by a class. If the class ‘rope’
has attributes ‘color’ and ‘length’, we can construct a ‘rope’ family with three
members — red and 3 m long, red and 4 m long, and blue and 2 m long. Each
member is an object.

observational data: Raw measurements from one or more instruments, or the results
from processing such raw measurements.

observing campaign: An observational assignment with which a group of people have
been charged (sometimes voluntarily) which extends over some period of time and
which can be accomplished without significant construction of new equipment (see
attribute type within class Investigation_Area).

PDS4 Concepts 30 2019-04-01

package: A product manifest and all related files logically grouped together for transfer.

parsable byte stream: A byte stream which can be parsed with standard rules — e.g.,
comma separated entries or standard punctuation; ‘decoding software’ is not
needed.

physical object: An object which is physical or tangible (and, therefore, does not itself fit
into a digital archive). Examples of ‘physical objects’ include the planet Saturn and
the Venus Express magnetometer. Note that an ASCII file describing Saturn is a
digital object, not a physical object (nor a component of a physical object).

primary component: The central, or most important, among several components; the
component which has relationships (either directly or indirectly) to all other
components in a composite structure.

primary member: A basic product is a primary member of the collection within which it
first enters PDS4. Every basic product must be a primary member of one (and only
one) collection. A product’s member status (primary or secondary) is based on its
first association with the collection. Although the product may be omitted from a
later version of the collection, it retains its primary or secondary member status
through all subsequent versions of the collection based on its initial association. In a
similar way, collections are categorized as having either primary or secondary
‘member status’ in their bundles.

product: One or more tagged objects (digital, non-digital, or both) grouped together and
having a single PDS-unique identifier. In the PDS4 implementation, the descriptions
are combined into a single XML label. Although it may be possible to locate
individual objects within PDS (and to find specific bit strings within digital objects),
PDS4 defines ‘products’ to be the smallest granular unit of addressable data within
its complete holdings.

registry: A data base that provides services for sharing content and metadata.

registration authority: An organization responsible for maintaining a registry — in this
case, the PDS4 Information Model and its components. The registration authority
for the Planetary Data System is ‘PDS’.

repository: A place, room, or container where something is deposited or stored (often for
safety or preservation).

resource: The target (referent) of any Uniform Resource Identifier; the thing to which a URI
points.

restored data: Data which have been recovered from storage and successfully prepared
for archive in PDS.

restriction: A limit placed on the range of a variable; specifically, the narrowing of possible
choices for a class or attribute. For example, attribute axes may have values
between 1 and 16 in the definition of Array, but it is restricted to the value ‘2’ in
Array_2D.

PDS4 Concepts 31 2019-04-01

schema: A structural definition given in a formal language which serves as a blueprint for
construction.

science bundle: Observational data from a science investigation, documentation, and
other supplementary data organized into a bundle structure for delivery to PDS.

secondary member: A basic product may be a secondary member of any number of
collections. A collection which lists references to basic products already registered
in PDS would identify those products as its secondary members. For example, if all
Voyager images were in one primary collection, an analyst could define a new
(subset) collection containing images which had Saturn’s rings within the field of
view; each of those image products would be a secondary member of the new
collection. A product’s member status (primary or secondary) is based on its first
association with the collection. Although the product may be omitted from a later
version of the collection, it retains its primary or secondary member status through
all subsequent versions of the collection based on its initial association. In a similar
way, collections are categorized as having either primary or secondary ‘member
status’ in their bundles.

steward: A person or organization that manages a set of registered attributes and classes,
typically as an agent for another or others. A registration authority must have at
least one steward; it may have many. Stewards for PDS4 include PDS, the discipline
nodes, and any mission wishing to conform to the PDS4 Information Model.

subclass: In PDS4 a subclass is a class extension. Subclasses are more specialized versions
of a class. They inherit attributes and behaviors from their parent classes, and they
can have attributes of their own. For example, Array_2D is a PDS4 subclass of
Array_Base.

supplementary data: Additional archival material which is useful in understanding
observational data. Examples include browse products, descriptions of instruments
and other facilities important to data acquisition, information about observing
geometry, calibrations, and observing and command logs.

table: A two-dimensional data structure composed of records, which themselves are
heterogeneous but which repeat throughout the table. For example, a table could
have 20 ASCII records, each of which has a 10-character date field, a comma, an 8-
character time field, a comma, a 3-digit integer temperature field, and a ‘carriage-
return line-feed’ record delimiter.

tag: Fundamental syntax in XML; a tag is a character string delimited by “<” and “>”. For
example “<date>” is a tag.

tagged digital object: A digital object paired with its companion description object.
[Note: In the OAIS RM this pair is known as an ‘information object’].

tagged non-digital object: A physical object or a conceptual object paired with its
companion description object. [Note: In the OAIS RM this pair is known as an
‘information object’].

version identifier (VID): An identifier which identifies the version of something else.

PDS4 Concepts 32 2019-04-01

versioned identifier (LIDVID): The concatenation of a logical identifier (LID) with a
version identifier (VID).

XML attribute: An attribute-value pair that is inserted into an XML element to provide
additional information, such as units; the value is always enclosed in double quotes.
For example

<date unit=”year”>2009</date>

XML document: A file that contains syntactically correct XML-formatted text.

XML editor: An editor, which has special features allowing XML tag completion, XML
validation, etc.

XML element: An XML structure that begins with <tag>, contains ‘content’, and ends with
</tag>. For example, “<date>2009</date>” is an XML element establishing the date
as 2009. The allowed ‘content’ is specified in the PDS4 Information Model, which is
propagated to the PDS4 Data Dictionary.

XML label: A label written using XML.

XML root tag: The first (and highest-level) XML tag in an XML document.

XML schema: The definition of an XML document, specifying required and optional XML
elements, their order, and parent-child relationships.

XML tag: Same as tag.

XML template: A text file which serves as a pattern for constructing XML documents.

PDS4 Concepts 33 2019-04-01

Appendix B – PDS4 Acronyms and Abbreviations

ASCII American Standard Code for Information Interchange

CCSDS Consultative Committee for Space Data Systems

COSPAR Committee on Space Research

DD Data Dictionary

DPH Data Provider’s Handbook

DST Dictionary Schema Template

ebXML electronic business eXtensible Markup Language

ESA European Space Agency

HTML Hypertext Markup Language

IAG International Association of Geodesy

IAU International Astronomical Union

IEEE Institute of Electrical and Electronics Engineers

IM Information Model

ISO International Standards Organization

ISO/IEC International Standards Organization / International Electrotechnical
Commission

ISO/TS International Standards Organization / Technical Standard

JPL Jet Propulsion Laboratory

LDD Local Data Dictionary

LSB Least Significant Bit

MD5 Message-Digest algorithm 5

MSB Most Significant Bit

NAIF Navigation and Ancillary Information Facility

NASA National Aeronautics and Space Administration

NBS National Bureau of Standards

OAIS Open Archival Information System

PDF Portable Document Format

PDS Planetary Data System

PDS4 Planetary Data System, version 4

PSA (ESA) Planetary Science Archive

PDS4 Concepts 34 2019-04-01

PSDD Planetary Science Data Dictionary

RM Reference Model

SPICE Spacecraft, Planet, Instrument, C-matrix (pointing), and Events kernels

SR (PDS) Standards Reference

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UTF Unicode Transformation Format

W3C World Wide Web Consortium

WXS W3C XML Schema

XML eXtensible Markup Language

XSD XML Schema Document

PDS4 Concepts 35 2019-04-01

Appendix C — PDS4 Data Dictionary

C.1 Introduction and Purpose

The Planetary Data System (PDS) PDS4 Data Dictionary (DD) is an adjunct to the PDS4
Information Model (IM); together they define the organization and components of PDS4
product labels. The components of a product label are description objects created from
classes and their attributes. This appendix provides an overview of the Data Dictionary, its
management, and its use.

The PDS4 Data Dictionary is actually a data base; it is distributed to users in two versions
— abridged and unabridged. The unabridged version includes an entry for every attribute
in each class it appears. Since many attributes are used with several classes and the
meaning often doesn’t change, there is considerable repetition. The abridged version has
been abstracted from the unabridged version; it contains full definitions but fewer details
and none of the repetition. ‘Housekeeping’ information is suppressed in both versions.

C.2 Related Documents

 Controlling Documents
o PDS4 Information Model Specification — The source for PDS4 class,

attribute, and data type definitions. See
http://pds.nasa.gov/pds4/doc/index.shtml for current and past versions.

o ISO/IEC 11179:3 Registry Metamodel and Basic Attributes Specification,
2003 ‐ The reference schema for the PDS4 data dictionary.

 Reference Documents
o PDS4 Glossary ‐ The source for terms used across the Planetary Data System

in its version 4 (PDS4) (Appendix A in the PDS4 Concepts document; see
http://pds.nasa.gov/pds4/doc/index.shtml for current and past versions).

o PDS3 Planetary Science Data Dictionary ‐ The online version of the PDS3
data dictionary was used as the source for a few data entries carried over to
the PDS4 system.

C.3 Terminology

The following are definitions of some important terms used in the Data Dictionary; these
are taken verbatim from the PDS4 Glossary.

1. attribute: A property or characteristic that provides a unit of information. For
example, ‘color’ and ‘length’ are possible attributes.

2. class: The set of attributes (including a name) which defines a family. A class is
generic — a template from which individual members of the family may be
constructed. If the class ‘rope’ (its name) is defined by attributes ‘color’ and ‘length’,
we can construct a family of ropes — e.g., red and 3 m long, red and 4 m long, blue
and 2 m long, ...

PDS4 Concepts 36 2019-04-01

3. association: An attribute that establishes a unidirectional relationship between two
classes. For example, a table has records; ‘has record’ is the relationship between
one entity (the table) and another (a record).

4. object: The realization of a single member of a family defined by a class. If the class
‘rope’ has attributes ‘color’ and ‘length’, we can construct a ‘rope’ family with three
members — red and 3 m long, red and 4 m long, and blue and 2 m long. Each
member is an object.

5. conceptual object: An object which is intangible (and, because it is intangible, does
not fit into a digital archive). Examples of ‘conceptual objects’ include the Cassini
mission and NASA’s strategic plan for solar system exploration. Note that a PDF
describing the Cassini mission is a digital object, not a conceptual object (nor a
component of a conceptual object).

6. digital object: An object which is real data — for example, a binary image of a
redwood tree or an ASCII table of atmospheric composition versus altitude.

7. physical object: An object which is physical or tangible (and, therefore, does not
itself fit into a digital archive). Examples of ‘physical objects’ include the planet
Saturn and the Venus Express magnetometer. Note that an ASCII file describing
Saturn is a digital object, not a physical object (nor a component of a physical
object).

8. resource: The target (referent) of any Uniform Resource Identifier; the thing to
which a URI points.

Note that the term data element is sometimes used as a synonym for attribute (or class
or both). In PDS3 it was used frequently as a synonym for keyword; it is not used in this
tutorial. The term keyword is avoided since keyword is more closely associated with
search terms, as in publication keywords. The term object, a synonym for class in the PDS3
data model, is not used in that sense here; an object is created from a class.

C.4 PDS4 Data Dictionary Structure

Meta‐attributes (attributes of attributes) are used to define attributes in a data dictionary.
For example, the attribute axes is defined using the meta‐attributes name and definition
(among others). name provides a common name for the attribute (“axes”) and definition
provides a statement that describes the attribute (“a count of the axes”).

A subset of the ISO/IEC 11179 Metadata Registry reference model was chosen for the PDS4
Data Dictionary meta‐attributes and structure. This standard ensures data system stability
and interoperability.

A model of an attribute definition is shown in Figure C-1. A PDS4 attribute is defined by the
structure within the dashed line: the four orange boxes labeled “Attributes” (which contain
meta-attributes) and the five blue boxes (containing decimal numbers) which represent
classes. Definitions of the meta-attributes are given below. The
External_Reference_Extended class provides optional background information for the
attribute definition, and the structure outside the dashed line is important for Data
Dictionary management; neither will be discussed further here.

PDS4 Concepts 37 2019-04-01

Figure C-1. Model of a PDS4 Data Dictionary attribute definition. Boxes with decimal numbers
represent classes; decimal numbers are the relevant section numbers in the PDS4 Information
Model. (Numbers from IM version 1.4.0.0 are used for illustration; they may change in later IM

versions.) The accompanying notations "1", "0..1", "1..*" and so on indicate cardinality. Structure
outside the dashed line is used for Data Dictionary management. Detailed substructure under both

Terminological_Entry boxes is the same; in the lower right it is not shown because of space
limitations.

Figures C-2 and C-3 show examples of how attributes and their meta-attributes are
presented through the PDS4 Data Dictionaries. Note that only some of the meta-attributes
are displayed in the Data Dictionary. Where a meta-attribute is required but does not
appear in an example (Figures C-2 or C-3), that is because the Data Dictionary does not
display the attribute — often because the attribute has the same value throughout the
Dictionary. Note also that several terms are used as both meta‐attributes here and
attributes elsewhere (e.g., name and comment); their definitions are allowed to differ
depending on the context. The definitions here apply only to meta‐attribute usage; see the
Data Dictionary itself for definitions in the attribute context. Also, even though the ISO/IEC
11179 specification allows the inclusion of class definitions, this aspect of the model is not
currently used; the PDS4 class definitions in the Data Dictionary are simply copied
verbatim from the PDS4 Information Model.

Meta-attributes are defined below.

1. The meta-attribute attribute_concept (required; supplied by the steward) provides
the type of information (a classification) conveyed by the attribute. For example,
axes has attribute_concept set to COUNT (Figure C-2).

PDS4 Concepts 38 2019-04-01

2. The meta‐attribute class_name (required) provides the common name by which
the parent class is identified; it is the class within which the attribute is used.
Specification of the class-attribute pair is a unique entry within a data dictionary.
class_name is set to ‘Array_2D’ in Figure C-2 and ‘Telescope’ in Figure C-3.

Figure C-2. PDS4 Abridged Data Dictionary entry for the attribute ‘axes’ as used with class
Array_2D.

3. The meta-attribute comment (optional) is a character string expressing one or
more remarks or thoughts relevant to the attribute. No comment is shown in
Figures C-2 or C-3.

4. The meta-attribute conceptual_domain (optional; supplied by the steward)
provides the domain to which the value has been assigned. For axes,

conceptual_domain is set to INTEGER (Figure C-2).
5. The meta-attribute definition (required) provides a statement, picture in words, or

account that defines the attribute. The definition used in the Data Dictionary is
selected from one or more definition choices in Terminological_Entry using
preferred_flag. The selected definition is shown in Figures C-2 and C-3 in the field
titled Description.

PDS4 Concepts 39 2019-04-01

Figure C-3. PDS4 Abridged Data Dictionary entry for the attribute ‘telescope_altitude’ in class
Telescope.

6. The meta-attribute enumeration_flag (optional) indicates whether there is an
enumerated set of permissible values. If not specified, the default value ‘false’ may
be assumed. enumeration_flag is set to ‘true’ for the examples in Figure C-2; this
can be inferred from the fact that Permissible Values are listed. In Figure C-3
enumeration_flag can be inferred to be ‘false’.

7. The meta-attribute formation_rule (optional) provides a user-friendly instruction
for forming values of the attribute; pattern is a symbolic instruction, which is not
intended to be user-friendly. formation_rule is not used in Figures C-2 and C-3.

8. The meta-attribute local_identifier (required) is a character string which uniquely
identifies DD_Attribute_Full within its label. In a complex label, local_identifier
provides a shorthand term that can be used when making internal references within
the label. No local_identifier is shown in Figures C-2 or C-3.

9. The meta‐attribute maximum_value (optional) provides the upper, inclusive bound
on the value. maximum_value is set to ‘16’ in Figure C-2.

10. The meta‐attribute minimum_value (optional) provides the lower, inclusive bound
on the value. minimum_value is set to ‘1’ in Figure C-2.

11. The meta-attribute name (required) provides a word or combination of words by
which the attribute is known. The name used in the Data Dictionary is selected from
one or more name choices in Terminological_Entry using preferred_flag. name
is shown in Figures C-2 and C-3 where it is ‘axes’ and ‘telescope_altitude’,
respectively.

12. The meta‐attribute namespace_id (required) is the abbreviation of the XML schema
namespace (see below) for this logical grouping of classes and attributes. The
namespace_id is assigned by the steward (see below); the PDS steward has set
namespace_id to ‘pds’ in Figures C-2 and C-3.

PDS4 Concepts 40 2019-04-01

13. The meta-attribute nillable_flag (required) indicates whether the attribute is
allowed to take on the value ‘nil’ — that is, to have no value at all. The value is set to
‘false’ in all three examples.

14. The meta-attribute pattern (optional) provides a symbolic instruction for forming
values. formation_rule is a user-friendly instruction, which is intended to convey
the same information in words that can be readily understood by a reader/user.
pattern is set to “None” in Figures C-2 and C-3.

15. DD_Permissible_Value is a class, optionally used within attribute definitions; so it
is not a meta-attribute per se, but its own attributes perform the same function. If
DD_Permissible_Value appears, it is accompanied by the attribute
enumeration_flag set to ‘true’. If multiple values are allowed, a separate
DD_Permissible_Value definition is required for each. The meta-attributes under
DD_Permissible_Value are:

A. value (required for each DD_Permissible_Value) is a single, allowed
numerical or character string value. The only permissible value for axes
when used with Array_2D is ‘2’ (Figure C-2). Note that enumeration_flag is
(implicitly) ‘true’ in Figure C-2. In Figure C-3 there is no enumeration; the
(hidden) enumeration_flag is ‘false’ and an infinite number of values is
possible.

B. value_begin_date (optional) provides the first date on which the permissible
value is in effect. value_begin_date is not used in Figures C-2 and C-3.

C. value_end_date (optional) provides the last date on which the permissible
value is in effect. value_end_date is not used in Figures C-2 and C-3.

D. value_meaning (required for each DD_Permissible_Value) is the meaning
or semantic content of the associated permissible value. Definitions are to
the right of values in Figure C-2.

16. The meta-attribute registered_by (required) provides the name of the person or
organization that registered the attribute. registered_by is not shown in Figures C-
2 and C-3.

17. The meta-attribute registration_authority_id (required) is the name of the
organization that registered the attribute definition. For all PDS attributes,
registration_authority_id is set to ‘0001_NASA_PDS_1’. registration_authority_id
is not shown in Figures C-2 and C-3.

18. The meta-attribute specified_unit_id (optional) gives the units in which other
meta-attributes (maximum_value , minimum_value, and DD_Permissible_Value)
are given. specified_unit_id is shown as Default Unit Id in Figure C-3 and is given as
‘m’.

19. The meta‐attribute steward_id (required) is the person or organization that
manages the set of registered attributes and classes. steward_id has been set to
‘pds’ in Figures C-2 and C-3.

20. The meta-attribute submitter_name (required) is the name of the author who
submitted the attribute definition to the steward. submitter_id is not shown in
Figures C-2 and C-3.

PDS4 Concepts 41 2019-04-01

21. Terminological_Entry is a required class; there may be multiple instances of
Terminological_Entry within a single DD_Attribute_Full. Meta-attributes under
Terminological_Entry are:

A. definition (required) provides a statement, picture in words, or account that
defines the term. definition of axes is “a count of the axes” (Figure C-2).

B. instance_id (optional) is the formal name of the Terminological_Entry.
C. language (required) indicates the language used for the name and

definition of the term. language is not shown in Figures C-2 and C-3.
D. name (required) provides a name for the term in the language selected. The

selected name appears as name under DD_Attribute_Full (#13 above).
E. preferred_flag (required) indicates whether this entry is preferred over all

other entries — for example, because of a language choice. If preferred, the
‘definition’ here becomes the definition under DD_Attribute_Full (#5 above)
and the ‘name’ here becomes the name under DD_Attribute_Full (#13 above).

Terminological_Entry is not shown explicitly in Figures C-2 and C-3.

22. The meta-attribute type (required) identifies the attribute as coming from PDS3 or
PDS4. It is not shown in the examples.

23. The meta‐attribute unit_of_measure_type (optional) provides the named grouping
of units to be used for this attribute. It names a class, of which there are about two
dozen choices. unit_of_measure_type is set to ‘Units_of_Length’ in Figure C-3.

24. The meta‐attribute value_data_type (required) provides the data type used to
represent the value and is shown as Type in the examples. The value_data_type for
axes is ASCII_Integer (Figure C-2), meaning that values like ‐255, 0, and 7 are
acceptable so far as storage is concerned (that ‐255 is not a meaningful count of axes
is addressed using DD_Permissible_Value). The value_data_type for altitude is

‘ASCII_Real’. value_data_type is an enumerated meta-attribute; acceptable values
can be found in the PDS4 Data Dictionary.

25. The meta‐attribute version_id (required; supplied by steward) identifies the
version of the attribute’s definition. version_id is set to ‘1.0.0.0’ in Figures C-2 and
C-3.

C.5 Management of Attributes and Classes

Management of PDS4 includes assignment of responsibility for maintenance of each
attribute and class in the Data Dictionary. The ISO/IEC 11179 reference model provides
two attributes for this purpose: ‘registration authority’ and ‘steward’. ‘Namespace’ also
plays a role but only for the XML implementation.

A registration authority is an organization responsible for maintaining a registry. The
ISO/IEC 11179 reference model allows many registration authorities, each of which is
uniquely identified. Each registration authority has, by definition, its own model and
therefore, implicitly, its own local dictionary. Each registration authority can design,
develop, and manage its own model and dictionary using any data modeling methodology
and independently of the other Registration Authorities.

PDS4 Concepts 42 2019-04-01

The registration authority identifier for the Planetary Data System is ‘0001_NASA_PDS_1’.
PDS has designed, developed, and managed its model using the ‘object oriented’
methodology. An important constraint levied by the model is that each attribute and class
must have a unique name within the model. But PDS attributes and classes may duplicate
those maintained by other registration authorities.

A steward is a person or organization who manages a set of registered attributes and
classes, typically as an agent of another or others. Each attribute and class in the PDS4 Data
Dictionary is assigned to a single steward. Stewards for PDS4 include PDS, the discipline
nodes, and any mission or international agency wishing to conform to the PDS4
Information Model. A registration authority must have at least one steward; but it may
have many. Stewards are uniquely identified within a registration authority. A single
steward may operate across many registration authorities.

Namespace is an abstract container or environment created to hold a logical grouping of
unique identifiers or symbols (i.e., names). An identifier defined in a namespace is
associated with that namespace. The same identifier may be independently defined in
multiple namespaces. Namespaces are not a functional component of the PDS4 Information
Model or Data Dictionary; rather, they are assigned and used for implementation into XML
Schema. A steward may ask for a namespace from the PDS Namespace Registry Service,
which will make the assignment if the namespace has not previously been assigned.

PDS4 Concepts 43 2019-04-01

Change Log

Version 1.4.0

Date Section(s) Changes

2013-05-01 All Original (v1.0.0) by Anne Raugh, Ron Joyner, and Dick Simpson

2015-07-08 Various Changed document version and date

2015-04-30 Change Log Added Change Log

2015-05-01 Figures C-1 through
C-4

Updated figures and captions for Information Model 1.4.0.0
and current Abridged Data Dictionary format.

2015-05-09 C.4 Added “in a data dictionary” to first sentence. Changed “four
blue boxes” to “five blue boxes” in third paragraph.

2015-05-10 C.4 meta-attribute
definitions

Added “8. Instance_id” under Terminological_Entry. “type”
and “unit_id” were removed from under
unit_of_measure_type; specified_unit_id was moved from
under unit_of_measure_type to being directly under
DD_Value_Domain_Full. Meta-attribute definitions were
renumbered as needed. Text was updated to be consistent
with IM 1.4.0.0 and the figures.

2015-05-10 6.3 Removed everything after the first paragraph and added a new
paragraph that reflects the current approach to local data
dictionary creation.

2015-05-10 7 Added close quote at end of paragraph.

2015-05-10 7.3 Made “’tailored’ schemas” plural in second line, since the
consulting node may provide more than one.

2015-05-10 8 Reworded the last sentence.

2015-05-10 9.1 Reworded the final sentence, correcting the delimiter pair.
Change “TAB” to “Tab” in the next to last sentence.

2015-05-10 10. Removed the final sentence, since N=4 and larger arrays are
now being used in PDS4 products

2015-05-10 6.4, 7, 10.1, 10.2 Replaced “global” by “common” when it refers to the PDS4
data dictionary used by everyone.

2015-05-10 10.3 In the second paragraph replaced “notationally, the leftmost
axis” by “notationally, the leftmost subscript”.

PDS4 Concepts 44 2019-04-01

2015-05-10 A (secondary
member)

Changed “… Voyager images were in one primary collection …”
by “… Voyager images were primary members of one collection
…”

2015-05-10 Table of Contents Updated.

2015-05-27 Figure C-4 caption Corrected ‘exposure_duration’ to ‘altitude in class Telescope’.

2015-07-08 1 Minor wording changes to this ‘Background’ paragraph.

2015-07-08 9 Added a footnote to the first sentence clarifying that ‘scalar’ is
not a storage structure.

2015-07-08 11 Expanded the footnote to say explicitly that Table_Delimited is
a parsable byte stream.

2015-07-08 12.1 Dropped the final sentence, since it added nothing.

2015-07-08 C.4 Meta-attribute #9 and meta-attribute #11: changed
minimum_characters and maximum_characters to ‘None’ for
consistency with Figure C-3. However, the values in C-3 are
wrong, so this needs to be corrected again if/when CCB-118 is
approved and implemented.

2015-07-08 C.4 Meta-attribute 17A: Noted that enumeration_flag, which was
shown explicitly in earlier Data Dictionaries, in now hidden and
must be inferred.

2015-09-03 Various CCB-124: Late typo and comparable changes requested by Tom
Stein in his JIRA comments of 2015-08-13. Style consistency
awaits adoption of style guidelines for PDS documents. See
detailed responses in Simpson JIRA comments of 2015-09-03.

Version 1.7.0

Version 1.7.0 of the Concepts Document incorporates changes made in the Information
Model versions 1.5.0, 1.6.0, and 1.7.0. There are no corresponding versions 1.5.0 and 1.6.0
of the Concepts Document because of a delay in updating the document. To keep the
Concepts Document version synchronized with the Information Model version, the
Concepts Document version was incremented from 1.4.0 to 1.7.0.

Date Section(s) Changes

2016-08-22 All Corrected formatting and style inconsistencies (not change-
tracked).

2016-08-24 Figure C-4 CCB-113: Updated definition of Telescope.altitude in the
figure. Figure C-4 has been renamed to Figure C-3.

PDS4 Concepts 45 2019-04-01

2016-09-12 2.2 Added statement that other agencies have governance over
their own repositories, namespaces and dictionaries, in
response to IPDA comment.

2016-09-12 6.1 Clarified the different forms of the data dictionary, in response
to IPDA comment.

2016-09-12 5, 6.2, 6.4, 7 Replaced references to "node data dictionaries" with
"discipline data dictionaries"; replaced "local data dictionaries"
with "mission data dictionaries" where appropriate, in
response to IPDA comment.

2016-09-12 7.3 Replaced "original master schema and tailored schemas" with
"common schema and any discipline and/or mission schemas",
in response to IPDA comment.

2016-09-12 3.2 Changed "documentation" to "documents". Clarified that
documents are not only for supplementary information;
documents may themselves be data products. In response to
IPDA comment.

2016-09-12 11, 11.1 Clarified that gutter space refers to fixed-width tables.
Referred to alternative (delimited) table format in section 12.3.
In response to IPDA comment.

2016-09-12 12.1 Removed sentence "Note that record delimiters (as mentioned
for the example above) are only required if mandated by the
external standard." Record_delimiter is always required.

2016-09-12 C.4 Removed sentence "The PDS4 Data Dictionary focuses on
attributes and, to a lesser extent, on classes." In response to
IPDA comment.

2016-09-12 C.5 Added "international agency" to list of stewards for PDS4 in
response to IPDA comment.

2016-09-12 5 Added reference to Appendix C.5 in response to IPDA
comment.

2016-09-12 Figures C-1 through
C-4

Removed Figure C-3 as the depicted Class was deprecated.
Renamed Figure C-4 to be Figure C-3. Updated all references
to figures and captions for Information Model 1.7.0.0.

2016-10-11 2.1 Mentioned sections by name, in response to Document
Reviewer comment.

2016-10-11 5 Extended final sentence in response to Document Reviewer
comment.

2016-10-11 6.5 Changed "the most likely three" to "the most likely three
schema files" in response to Document Reviewer comment.

2016-10-11 C.4 item 11 Removed reference to sample_display_direction, as that figure
has been removed.

PDS4 Concepts 46 2019-04-01

2016-10-11 11.2 Changed IEEE-954 to IEEE-754 in response to Document
Reviewer comment.

2016-10-11 12.1 Removed encoding_type from list of attributes for
Stream_Text in response to Document Reviewer comment.

2016-10-20 Figure C-1 Revised caption to explain that section numbers from IM
1.4.0.0 are used for illustration but they may change in later IM
versions. In response to Document Reviewer comment.

2016-10-20 3.1, 3.2 Added delimited tables in 3.1 as example of format for
observational data, with a footnote stating that they are a type
of PDS parsable byte stream. Removed delimited tables from
3.2 final sentence because they are not used for
documentation. In response to Document Reviewer comment.

2016-10-20 4, 4.5 Included Schematron in heading and first paragraph. Added
new subsection 4.5 to briefly define Schematron, referring the
reader to the DPH Appendix B and an online source. In
response to Document Reviewer comment.

2016-10-20 6.2 Mentioned geometry as an example of a discipline data
dictionary, and revised sentence to explain mission
dictionaries. In response to Document Reviewer comment.

2016-10-20 6.2 Removed sentence "Ultimately all dictionaries will be loaded
into the PDS4 dictionary data base (DBB), which integrates all
dictionaries into a single master data base that users may
query." because this sentence is not necessarily true. Also
removed DBB from the acronym list, the only other place it
occurs.

2016-20-20 6.3 Para. 1 and 2: revised wording to say that individual data
preparers may create LDDs but they must be done with the
supervision of a consulting node. Previous wording suggested
that data preparers had to create LDDs and that help from the
consulting node was optional.

2016-10-20 6.4 Revised wording to indicate that the PDS common dictionary is
required, and while it is typical to have additional LDDs, they
are optional. Removed mention of "node" in bullet 2. Removed
mention of data preparer in bullet 3. The purpose of the list is
to show typical use of dictionaries in a label, not who makes
them. In response to Document Reviewer comment.

2016-10-20 III Para. 2: Removed "As a general rule, PDS does not recommend
reformatting raw data because errors, however unlikely, may
render the entire archive unusable in ways that can never be
corrected." A Document Reviewer pointed out that this is
inconsistent with PDS policy on allowed formats for
observational data. Replaced with "Care must be taken if
reformatting raw data because errors, however unlikely, may

PDS4 Concepts 47 2019-04-01

render the entire archive unusable in ways that can never be
corrected." The point is that if the raw data are not compliant
they must be reformatted to become compliant, but it must be
done carefully to avoid data loss.

Version 1.8.0

Date Section(s) Changes

2017-04-06 None No changes have been made to the Concepts Document for
the release of Information Model 1.8.0.

Version 1.9.0

Date Section(s) Changes

2017-08-10 Footnote, Section 5 CCB-180. Added statement that only registered namespaces
may be used in PDS4 labels.

Version 1.10.0

Date Section(s) Changes

2018-03-05 11.3, Records and
fields

Removed mention of Packed_Data_Fields as an example of a
class that can appear within a table field, and replaced it with
Field_Statistics. Packed data are not permitted for
observational data, according to PDS policy. The example
might have led a user to believe that packed data are valid for
use in observational data products.

2018-03-05 Glossary CCB-174. Added definitions for component, primary
component, and composite structure.

Version 1.11.0

Date Section(s) Changes

2018-10-01 None No changes have been made to the Concepts Document for
the release of Information Model 1.11.0.

Version 1.12.0

Date Section(s) Changes

2019-04-01 None No changes have been made to the Concepts Document for
the release of Information Model 1.12.0.

PDS4 Concepts 48 2019-04-01

